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GENERALISED FIXED POINT THEOREMS IN FUZZY 2-METRIC SPACES 
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Abstract: In this paper, we give some new extend, generalize and improve the corresponding results 

given by many authors compatible mappings of types -I &II in fuzzy-2 metric space prove.  

Keywords: Fuzzy metric space, Compatible mappings, Common fixed point. 

1. Introduction 

Impact of fixed point theory in different branches of mathematics and its applications is immense. The 

first result on fixed points for contractive type mapping was the much celebrated Banach’s contraction 

principle by S. Banach [10] in 1922. In the general setting of complete metric space, this theorem runs 

as the follows, Theorem 1.1(Banach’s contraction principle) Let (X, d) be a complete metric space, c∈ 

(0, 1) and f: X→X be a mapping such that for each x, y∈ X, d (𝑓𝑥, 𝑓𝑦) ≤ c d(x, y) Then f has a unique 

fixed point a∈ X, such that for each x∈X, lim
𝑛→∞

𝑓𝑛𝑥 = 𝑎.  

After the classical result, R.Kannan [11] gave a subsequently new contractive mapping to prove the 

fixed point theorem[12,13] & also in common[14] & 2-fuzzy [15,16]. Since then a number of 

mathematicians have been worked on fixed point theory dealing with mappings satisfying various 

type of contractive conditions. In 2002, A. Branciari [1] analyzed the existence of fixed point for 
mapping f defined on a complete metric space (X, d) satisfying a general contractive condition of 

integral type.  

 

2 Preliminary Notes  

Definition 2.1 A binary operation * : [0,1]× [0,1]× [0,1] → [0,1] is a continuous t-norms if ([0,1] ,*) is  

an abelian topological nonoil with unit 1 such that  

 a1* b1*c1≤ a2 * b2* c2 whenever a1 ≤ a2, b1 ≤ b2 and c1≤ c2  

for all a1, a2, b1,b2 ,c1, c2 are in [0,1]. 

Definition 2.2 A 3-tuple (X,M,*) is said to be a fuzzy 2- metric space if X is an arbitrary set, * is a 

continuous t-norm and M is a fuzzy set on X3× (0,∞) satisfying the following conditions:  

for all x,y,z,t є X and t1,t2,t3 > 0, 

(1)M(x,y,z,t) > 0; 

(2)M(x,y,z,t) = 1, t  > 0  when at least two of the three points are equal 

(3) M(x,y,z,t) = M(x,z,y,t) = M(y,z,x,t) 

(4)M(x,y,z,t1)*  M(x,u,z,t2) *  M(u,y,z,t3)  ≤ M(x,y,z,t1+t2+t3)  

 
The function value M(x,y,z,t)  may be interpreted as the probability that the area of triangle is less 

than t.  

(5)M(x,y,z,.): [0,1)→[0,1] is left continuous. 

 

 Definition2.3 [08] Let (X, M,*) be a fuzzy- 2 metric space. 

(1) A sequence {𝑥𝑛} in fuzzy -2 metric space X is said to be convergent to a point x ∈ X (denoted by  

lim
𝑛→∞

𝑥𝑛 = 𝑥   𝑜𝑟   𝑥𝑛 → 𝑥 

 if for any   ∈ (0,1) and  t > 0, there exists 𝑛0 ∈ N such that for all n ≥ 𝑛0 and a ∈ X, M (𝑥𝑛 , 𝑥, a, 

t) > 1 −  .  
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That is  

        lim
𝑛→∞

M (𝑥𝑛 , 𝑥, a, t) = 1  for all a ∈ X  and  t > 0. 

(2) A sequence {𝑥𝑛} in fuzzy- 2 metric space X is called a Cauchy sequence, if for any  ∈ (0,1) and t 

> 0, there exists 𝑛0 ∈ N such that for all m, n ≥ 𝑛0 and a ∈ X, M (𝑥𝑛 , 𝑥𝑚, a, t) > 1 −  .  

(3) A fuzzy- 2 metric space in which every Cauchy sequence is convergent is said to be complete. 

 

Definition2.4 [08] Self mappings A and B of a fuzzy- 2 metric space (X, M,*) is said to be 
compatible, if  

lim
𝑛→∞

M (AB𝑥𝑛, BA𝑥𝑛, a, t) = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑋 𝑎𝑛𝑑 𝑡 > 0, 

 Whenever {𝑥𝑛} is a sequence in X such that  

lim
𝑛→∞

A𝑥𝑛 = lim
𝑛→∞

B𝑥𝑛 = 𝑧   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑧 ∈ 𝑋.  𝑇ℎ𝑒𝑛    lim
𝑛→∞

AB𝑥𝑛 = 𝐵𝑧. 

Definition 2.5 Let (X, M, *) is a fuzzy-2 metric space. Then 

(a) A sequence {xn} in X is said to converse to x in X if for each є>o and each t>o, Nno   such           

      That M(xn,x,t)>1-є for all n ≥ no. 

(b)a sequence {xn} in X is said to Cauchy to if for each є >o and each t>o, Nno   such           

      That M(xn,xm,t)>1-є for all n, m ≥no. 

(c) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete. 

Definition 2.6 [3] Two self mappings f and g of a fuzzy metric space (X,M,*) are called compatible if  

1),,(lim 


tgfxfgxM nn
n

whenever {xn} is a sequence in X such that xgxfx n
n

n
n




limlim  

For some x in X. 

Definition 2.7 [1]Two self mappings f and g of a fuzzy metric space (X,M,*) are called reciprocally 

continuous on X if fxfgxn
n




lim  and gxgfxn
n




lim  whenever {xn} is a sequence in X such that 

xgxfx n
n

n
n




limlim for some x in X. 

Lemma 2.2.1[08] Let (X, M,*) be a fuzzy- 2 metric space. If there exists q ∈ (0, 1) such that  

M(x, y, z, qt + 0) ≥ M(x, y, z, t) for all x, y, z ∈ X with z ≠ x, z ≠ y and t > 0, then x = y, 

 

Lemma 2.2.2[4] Let X be a set, f,g  owc self maps of X. If f and g have a unique point of coincidence, 

w = fx = gx, then w is the unique common fixed point of f and g. 

 

 

3  Main Results 
 

Theorem 3.1Let (X, M, *) be a complete fuzzy 2-metric space and let P, R, S and T be self-mappings 

of X. Let the pairs {P,S} and {R,T} be owc.If there exists q є (0,1) such that 

 
M(Px,Ry,a,qt)≥ min{M(Sx,Ty,a,t), M(Sx,Px,a,t), M(Ry,Ty,a,t), M(Px,Ty,a,t), M(Ry,Sx,a,t)}  

          ……………(1) 

For all x,y є X and for all t > o, then there exists a unique point w є X such that Pw = Sw = w and a 

unique point z є X such that Rz = Tz = z. Moreover z = w so that there is a unique common fixed 

point of P,R,S and T. 

 

Proof :Let the pairs {P,S} and {R,T} be owc, so there are points x,y є X such that Px=Sx and Ry=Ty. 

We claim that Px=Ry. If not, by inequality (1) 

 

M(Px,Ry,a,qt)≥ min{ M(Sx,Ty,a,t), M(Sx,Px,a,t), M(Ry,Ty,a,t), M(Px,Ty,a,t), M(Ry,Sx,a,t)} 

         ≥ min{ M(Px,Ry,a,t), M(Px,Px,a,t), M(Ty,Ty,a,t), M(Px,Ry,a,t), M(Ry,Px,a,t)} 
                       ≥ min{ M(Px,Ry,a,t), M(Px,Px,a,t), M(Ty,Ty,a,t), M(Px,Ry,a,t), M(Px,Ry,a,t)} 

        =M(Px,Ry,a,t). 

 

GIS SCIENCE JOURNAL

VOLUME 9, ISSUE 11, 2022

ISSN NO : 1869-9391

PAGE NO: 660



3 
 

Therefore Px = Ry,  i.e. Px = Sx = Ry = Ty. Suppose that there is a another point z such that     Pz = 

Sz then by (1) we have Pz = Sz = Ry = Ty, so Px=Pz and w = Px = Sx  is the unique point of 

coincidence of P and S.By Lemma 2.8 w is the only common fixed point of P and S. Similarly there is 

a unique point z є X such that z = Rz = Tz.  

 
  

Assume that w  z. we have 

 

  M(w,z,a,qt) = M(Pw,Rz,a,qt) 

  ≥min{ M(Sw,Tz,a,t), M(Sw,Pw,a,t), M(Rz,Tz,a,t), M(Pw,Tz,a,t), M(Rz,Sw,a,t)} 

 

 ≥ min{ M(w,z,a,t), M(w,w,a,t), M(z,z,a,t), M(w,z,a,t), M(z,w,a,t)} 

   

               =M(w,z,a,t). 

 

Therefore we have z = w and z is a common fixed point of P,R,S and T. The uniqueness of the fixed 

point holds. 
Theorem 3.2 Let (X, M, *) be a complete fuzzy 2- metric space and let P, R, S and T be self-

mappings of X. Let the pairs {P,S} and {R,T} be owc. If there exists q є (0,1) such that 

 

M(Px,Ry,a,qt) ≥ Ø (min{ M(Sx,Ty,a,t), M(Sx,Px,a,t), M(Ry,Ty,a,t), M(Px,Ty,a,t), M(Ry,Sx,a,t)}) 

          ……………(2) 

 

For all x, y є X and  Ø : [0,1 ]→ [0,1] such that Ø(t)  > t for all 0< t < 1, then there exists a unique 

common fixed point of P,R,S and T. 

 

Proof : Let the pairs {P,S} and {R,T} be owc, so there are points x, y є X such that Px = Sx and   Ry 

= Ty. We claim that Px = Ry. If not, by inequality (2) 
 

M(Px,Ry,a,qt)≥ Ø (min{ M(Sx,Ty,a,t), M(Sx,Px,a,t), M(Ry,Ty,a,t), M(Px,Ty,a,t), M(Ry,Sx,a,t)}) 

     >Ø (M(Px,Ry,a,t)). From Theorem 3.1 

              =M(Px,Ry,a,t). 

 

Assume that w   z. we have 

 

  M(w,z,a,qt) = M(Pw,Rz,a,qt) 

 

≥ Ø (min{ M(Sw,Tz,a,t), M(Sw,Pw,a,t), M(Rz,Tz,a,t), M(Pw,Tz,a,t), M(Rz,Sw,a,t)}) 

 

  =M(w,z,a,t).   From Theorem 3.1 
 

Therefore we have z = w and z is a common fixed point of P,R,S and T. The uniqueness of the fixed 

point holds. 

Theorem 3.3 Let (X, M, *) be a complete fuzzy 2- metric space and let P,R,S and T be self-mappings 

of X. Let the pairs {P,S} and {R,T} be owc. If there exists q є (0,1) such that 

 

M(Px,Ry,a,qt) ≥ Ø ( M(Sx,Ty,a,t), M(Sx,Px,a,t), M(Ry,Ty,a,t), M(Px,Ty,a,t), M(Ry,Sx,a,t))  

          ……………(3) 

 

For all x,y є X and Ø: [0,1]7→[0,1] such that Ø(t,1,1,t,t,1) > t for all 0 < t < 1, then there exists a 

unique common fixed point of P,R,S and T. 
 

Proof: Let the pairs {P,S} and {R,T} be owc, so there are points x,y є X such that Px = Sx and   Ry = 

Ty. We claim that  Px = Ry. If not, by inequality (3) 

 

M(Px,Ry,a,qt) ≥ Ø ( M(Sx,Ty,a,t), M(Sx,Px,a,t), M(Ry,Ty,a,t), M(Px,Ty,a,t), M(Ry,Sx,a,t)) 
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         ≥ Ø(M(Px,Ry,a,t), M(Px,Px,a,t), M(Ty,Ty,a,t), M(Px,Ry,a,t), M(Ry,Px,a,t)) 

≥ Ø( M(Px,Ry,a,t), M(Px,Px,a,t), M(Ty,Ty,a,t), M(Px,Ry,a,t),M(Px,Ry,a,t)) 

   = Ø(M(Px,Ry,a,t), 1, 1, M(Px,Ry,a,t),  M(Px,Ry,a,t)) 

   =M(Px,Ry,a,t). 

 
A contradiction, therefore Px = Ry,  i.e. Px = Sx = Ry = Ty. Suppose that there is a another point z 

such that Pz = Sz then by (3) we have Pz = Sz = Ry = Ty, so Px=Pz and w = Px = Sx  is the unique 

point of coincidence of P and S.By Lemma 2.8 w is the only common fixed point of P and S.Similarly 

there is a unique point z є X such that z = Rz = Tz.Thus z is a common fixed point of P,R,S and T. 

The uniqueness of the fixed point holds from (3). 

Theorem 3.4 Let (X, M, *) be a complete fuzzy 2- metric space and let P,R,S and T be self-mappings 

of X. Let the pairs {P,S} and {R,T} be owc.If there exists qє(0,1) for all x,y є X and      t > 0 

M(Px,Ry,a,qt) ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Ry,Ty,a,t)*  M(Px,Ty,a,t)*  M(Ry,Sx,a,t)  

         ………………… (4) 

Then there exists a unique common fixed point of P,R,S and T.  

 

Proof: Let the pairs {P,S} and {R,T} be owc, so there are points x,yєX such that Px = Sx and   Ry = 
Ty. We claim that  Px = Ry. If not, by inequality (4) 

We have  

M(Px,Ry,a,qt) ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Ry,Ty,a,t)*  M(Px,Ty,a,t)*  M(Ry,Sx,a,t) 

    = M(Px,Ry,a,t)*  M(Px,Px,a,t)*  M(Ty,Ty,a,t)*  M(Px,Ry,a,t)*  M(Ry,Px,a,t) 

= M(Px,Ry,a,t)*  1*  1*  M(Px,Ry,a,t)*  M(Ry,Px,a,t) 

> M(Px,Ry,a,t). 

 

Thus we have Px = Ry,  i.e. Px = Sx = Ry = Ty. Suppose that there is a another point z such that Pz = 

Sz then by (4) we have Pz = Sz = Ry = Ty, so Px=Pz and w = Px = Sx  is the unique point of 

coincidence of P and S. Similarly there is a unique point z є X such that z = Rz = Tz. Thus  

w is a common fixed point of P,R,S and T. 
Corollary 3.5 Let (X, M, *) be a complete fuzzy 2- metric space and let P,R,S and T be self-mappings 

of X. Let the pairs {P,S} and {R,T} be owc. If there exists q є (0,1) for all x, y є X and      t > 0  

 

M(Px,Ry,a,qt) ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Ry,Ty,a,t)*  M(Px,Ty,a,t)*  M(Ry,Sx,a,2t) 

                 …………………(5) 

Then there exists a unique common fixed point of P,R,S and T. 

Proof: We have 

M(Px,Ry,a,qt) ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Ry,Ty,a,t)*  M(Px,Ty,a,t)*  M(Ry,Sx,a,2t) 

        ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Ry,Ty,a,t)*  M(Px,Ty,a,t)*  M(Sx,Ty,a,t)                

         ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Ry,Ty,a,t)*  M(Px,Ty,a,t) *  M(Px,Ry,a,t) 

                       = M(Px,Ry,a,t)*  M(Px,Px,a,t)*  M(Ty,Ty,a,t)*  M(Px,Ry,a,t)*  M(Ry,Px,a,t) 

     = M(Px,Ry,a,t)*  1*  1*  M(Px,Ry,a,t)*  M(Ry,Px,a,t) 
   >M(Px,Ry,a,t). 

 

And therefore from theorem 3.4, P, R, S and T have a common fixed point. 

 

Corollary 3.6 Let (X, M, *) be a complete fuzzy  2-metric space and let P,R,S and T be self-mappings 

of X. Let the pairs {P,S} and {R,T} be owc. If there exists qє(0,1) for all x,yє X and      t > 0  

 

M(Px,Ry,a,qt) ≥ M(Sx,Ty,a,t)           …………………(6) 

 

Then there exists a unique common fixed point of P,R,S and T. 

Proof: The Proof follows from Corollary 3.5 
Theorem 3.7 Let (X, M, *) be a complete fuzzy 2- metric space.Then continuous self-mappings S and 

T of X have a common fixed point in X if and only if there exites a self mapping P of X such that the 

following conditions are satisfied 

 (i) PX   TX   SX 

 (ii)  The pairs {P,S} and {P,T} are weakly compatible, 
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 (iii) There exists a point qє(0,1) such that for all x,yєX and t > 0  

M(Px,Py,a,qt) ≥ M(Sx,Ty,a,t)*  M(Sx,Px,a,t)*  M(Py,Ty,a,t)*  M(Px,Ty,a,t)*  M(Py,Sx,a,t) ) 

              …………………(7) 

Then P, S and T have a unique common fixed point. 

 
Proof: Since compatible implies ows, the result follows from Theorem 3.4 

 

Theorem 3.8 Let (X, M, *) be a complete fuzzy 2- metric space and let P and R be self-mappings of 

X. Let the P and R are owc.If there exists q є (0,1) for all x,y є X and t > 0  

 

M(Sx,Sy,a,qt) ≥αM(Px,Py,a,t)+β min{ M(Sx,Px,a,t), M(Sx,Py,a,t)}…………..(8) 

For all x,y є X where α,β > 0, α+β > 1. Then P and S have a unique common fixed point. 

 

Proof: Let the pairs {P,S} be owc, so there are points x єX such that Px = Sx. Suppose that exist 

another point y єX for whichPy = Sy. We claim that Sx = Sy. By inequality (8) 

We have  

M(Sx,Sy,a,qt) ≥ α M(Px,Py,a,t) + β min{M(Sx,Px,a,t),M(Sx,Py,a,t)} 
   =α M(Sx,Sy,a,t) + β min{M(Sx,Sx,a,t),M(Sx,Sy,a,t)}               

   =(α+β)M(Sx,Sy,a,t) 

 

A contradiction, since (α+β) > 1.Therefore Sx = Sy. Therefore Px = Py and Px is unique. 

 From lemma 2.2.2, P and S have a unique fixed point. 

 

Conclusion It is also used in Fuzzy 3 metric spaces other type of metric. Also in integral metric 

spaces type in Fuzzy 2& 3 metric spaces 
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Abstract:  

The main purpose of this paper is to present some fixed point results concerning the 

generalized contraction principle mappings in b-metric spaces over Banach algebras. We 

also give an example to support our main theorem. To obtained the results basic concept 

of fixed point that is Banch’s contraction principle is mainly used and extension is 

obtained for various type of sexpressions. Obtained results are useful in image processing 

as well as in materials research for phase transition study and initial value and boundary 

value problems   

Keywords: Fixed points; contraction type mapping; b-metric space; Banach algebras. 

𝟏. Introduction 

The concept of b-metric space was introduced by Bakhtin [5] in 1989, which used it to 

prove a generalization of the Banach contraction principle in spaces endowed with such 

kind of metrics. Since then, this notion has been used by many authors to obtain various 

fixed point theorems. Aydi et al. in [4] proved common fixed point results for single 

valued and multi-valued mappings satisfying a weak 𝜑 −contraction in b-metric spaces. 

Roshan et al. in [19] used the notion of almost generalized contractive mappings in 

ordered complete b-metric spaces and established some fixed and common fixed point 

results.Theconcept of b-metric space coincides with the concept of metric space. For 

some detailson subject see [7-20]. 

The aim of this paper is to generalize contraction principle mappings in b-metric 

spaces over Banach algebras and give an example to illustrate our main results. 
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𝟐.Definitions Preliminaries 

Definition 𝟐. 𝟏. ([11])  Let (𝑋, 𝑑) be a nonempty set and 𝑠 ≥ 1 be a given real number. 

A function 𝑑: 𝑋 × 𝑋 → [0,∞) is a b-metric if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following conditions 

are satisfied: 

(𝑏1)  𝑑(𝑥, 𝑦) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦, 

(𝑏2)  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 

(𝑏3)  𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)] 

In this case, the pair (𝑋, 𝑑) is called a b-metric space. 

It should be noted that, the class of b-metric spaces is effectively larger than that of 

metric spaces; every metric is a b-metric with 𝑠 = 1. 

Definition 𝟐. 𝟐. ([10]) Let {𝑥𝑛} be a sequence in a b-metric space (𝑋, 𝑑). 

a. {𝑥𝑛} is called b-convergent if and only if there is 𝑥 ∈ 𝑋 such that 𝑑(𝑥𝑛 , 𝑥) → 0 as 

𝑛 → ∞. 

b. {𝑥𝑛} is a b-Cauchy sequence if and only if 𝑑(𝑥𝑛 , 𝑥𝑚) → 0 𝑎𝑠 𝑛,𝑚 → ∞.  

c. A b-metric space (𝑋, 𝑑)is said to be complete if and only if each b-cauchy 

sequence in this space is b-convergent. 

Lemma𝟐. 𝟑. ([11])Let (𝑋, 𝑑) be a b-metric space with 𝑠 ≥ 1. 

i. If a sequence {𝑥𝑛} ⊂ 𝑋 is a b-convergent sequence, then it admits a unique limit. 

ii. Every b-convergent sequence in 𝑋 is b-cauchy. 

Definition 𝟐. 𝟒. ([10])Let (𝑋, 𝑑) be a b-metric space. A subset 𝑌 ⊂ 𝑋 is called closed if 

and only if for each sequence {𝑥𝑛} in 𝑌 which b-converges to an element 𝑥, we have 𝑥 ∈

𝑌. 

𝟑.Main Results 

Definition 𝟑. 𝟏. ([14]) Let 𝑋 be a non empty set and 𝜃:𝑋 × 𝑋 → [1,∞). A function 𝑑𝜃 ∶

𝑋 × 𝑋 → [0,∞) is called an extended b-metric if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 it satisfies:  

𝑑𝜃1   𝑑𝜃(𝑥, 𝑦) = 0 𝑖𝑓𝑓 𝑥 = 𝑦; 

𝑑𝜃2    𝑑𝜃(𝑥, 𝑦) = 𝑑𝜃(𝑦, 𝑥); 
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𝑑𝜃3 𝑑𝜃(𝑥, 𝑧) ≤ 𝜃(𝑥, 𝑧)[𝑑𝜃(𝑥, 𝑦) + 𝑑𝜃(𝑦, 𝑧)]. 

The pair (𝑋, 𝑑𝜃) is called an extended b-metric. 

Remark 𝟑. 𝟐.If 𝜃(𝑥, 𝑦) = 𝑠 𝑓𝑜𝑟 𝑠 ≥ 1 then we obtain the definition of a b-metric space. 

Definition 𝟑. 𝟑. ([14])Let(𝑋, 𝑑𝜃) be an extended b-metric space. 

i. A sequence {𝑥𝑛} in X is said to converge to 𝑥 ∈ 𝑋, if for every 𝜖 > 0 there exists 

𝑁 = 𝑁(𝜖) ∈ ℕ such that 𝑑𝜃(𝑥𝑛 , 𝑥) < 𝜖, ∀ 𝑛 ≥ 𝑁. in this case, we write 

lim
𝑛→∞

𝑥𝑛 = 𝑥. 

ii. A sequence {𝑥𝑛} in X is said to be Cauchy, if for every 𝜖 > 0 there exists 𝑁 =

𝑁(𝜖) ∈ ℕ such that 𝑑𝜃(𝑥𝑚 , 𝑥𝑛) < 𝜖, ∀ 𝑚, 𝑛 ≥ 𝑁. 

Definition 𝟑. 𝟒. ([14]) An extended b-metric space (𝑋, 𝑑𝜃) is complete if every Cauchy sequence 
in 𝑋 is convergent.  

Theorem 𝟑. 𝟓. Let (𝑋, 𝑑𝜃) be a complete extended 𝑏𝑚𝑠 − 𝑏𝑎such that 𝑑𝜃  is a continuous 

functional with parameter 𝑠 ≥ 1 and let the mappings 𝑇 ∶  𝑋2 → 𝑋satisfying the 

contractive condition: 

𝑑𝜃(𝑇𝑥, 𝑇𝑦) ≤ 𝑘[𝑑𝜃(𝑥, 𝑇𝑥) + 𝑑𝜃(𝑦, 𝑇𝑦) + 𝑑𝜃(𝑥, 𝑦)]∀𝑥, 𝑦 ∈ 𝑋,           (3.1) 

Where 𝑘 ∈ [0,1) such that for each 𝑥 ∈ 𝑋,Then T has a unique fixed point 𝑥𝑖𝑛𝑋 such that 

𝑑𝜃(𝑥, 𝑥) = 0. 

Proof: Let 𝑥 ∈ 𝑋 From (3.1) we have  

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+1𝑥)  ≤ 𝑘𝑑𝜃(𝑇

𝑛−1𝑥, 𝑇𝑛𝑥) ≤ ⋯ 

≤ 𝑘𝑛𝑑𝜃(𝑥, 𝑇𝑥), (3.2) 

Repeating this process we obtain  

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+1𝑥) ≤ 𝑘𝑛𝑑𝜃(𝑥, 𝑇𝑥), (3.3) 

Here the proof is divided into two cases: 

Case 𝟏. 
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Let 𝑇𝑛𝑥 = 𝑇𝑚𝑥 for some 𝑚, 𝑛 ∈ ℕ, 𝑛 ≠ 𝑚. 𝑖𝑓 𝑚 > 𝑛 𝑡ℎ𝑒𝑛 𝑇𝑚−𝑛(𝑇𝑛𝑥) = 𝑇𝑛𝑥 , that is 

𝑇𝑛𝑥 = 𝑦, 𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝑚 − 𝑛. then 

𝑇𝑝𝑦 = 𝑦, (3.4) 

By (3.1) 𝑎𝑛𝑑 (3.2),  we have 

𝑑𝜃(𝑦, 𝑇𝑦) = 𝑑𝜃(𝑇
𝑝𝑦, 𝑇𝑝+1𝑦) ≤ 𝑘𝑝𝑑𝜃(𝑦, 𝑇𝑦)  (3.5) 

Since 𝑘 ∈ (0,1), we get 𝑑𝜃(𝑦, 𝑇𝑦) = 0, 𝑠𝑜 𝑦 = 𝑇𝑦; that is 𝑦 is a fixed point of  𝑇. 

Case 𝟐. 

Suppose 𝑇𝑛𝑥 ≠ 𝑇𝑚𝑥, ∀ 𝑚, 𝑛 ∈ ℕ, 𝑛 ≠ 𝑚. we rewrite (3.2) as 

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+1𝑥) 

≤ 𝑠[𝑘𝑛𝑑𝜃(𝑥, 𝑇𝑥)] 

≤ 𝑠[𝑘𝑛𝑑𝜃(𝑥, 𝑇𝑥) + 𝑘
𝑛+1𝑑𝜃(𝑥, 𝑇𝑥) + 𝑘

𝑛+2𝑑𝜃(𝑥, 𝑇𝑥)]  

≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑛+𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

Since 

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+𝑚𝑥) ≤ 𝑠∑𝑠𝑚

∞

𝑚

𝑘𝑚(𝑑𝜃(𝑥, 𝑇𝑥))       (3.6) 

Similarly, by (3.1), we have 

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+2𝑥) ≤ 𝑘𝑑𝜃(𝑇

𝑛−1𝑥, 𝑇𝑛+1𝑥) ≤ ⋯ 

𝑘𝑛𝑑𝜃(𝑥, 𝑇
2𝑥) 
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≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑛+𝑚(𝑑𝜃(𝑥, 𝑇𝑥))          (3.7) 

For 𝑚 > 3 𝑎𝑛𝑑 𝑚 = 3𝑝 + 1, 𝑝 ≥ 1 and using the fact that 𝑔𝑞𝑥 ≠ 𝑔𝑟𝑥, ∀ 𝑞, 𝑟 ∈ ℕ, 𝑞 ≠

𝑟, we have 

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+𝑚𝑥) 

≤ 𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑠[𝑑𝜃(𝑇

𝑛+1𝑥, 𝑇𝑛+2𝑥) +⋯ 

+𝑑𝜃(𝑇
𝑛+2𝑝𝑥, 𝑇𝑛+2𝑝+1𝑥, )]  

≤ 𝑠[𝑘𝑛𝑑𝜃(𝑥, 𝑇𝑥) + 𝑘
𝑛+1𝑑𝜃(𝑥, 𝑇𝑥) +⋯ 

+𝑘𝑛+2𝑝𝑑𝜃(𝑥, 𝑇𝑥)] 

≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑛+𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

Thus for 𝑚 > 𝑛 above inequality implies: 

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+𝑚𝑥) ≤ 𝑠∑𝑠𝑚

∞

𝑚

𝑘𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

Similarly, for 𝑚 > 4 and 𝑚 = 3𝑏 + 2, 𝑏 ≥ 1 and using the fact that 𝑔𝑞𝑥 ≠ 𝑔𝑟𝑥, ∀ 𝑞, 𝑟 ∈

ℕ, 𝑞 ≠ 𝑟, 

By triangular property, we have  

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+3𝑏+2𝑥) 

≤ 𝑠[𝑑𝜃(𝑇
𝑛+3𝑏+2𝑥, 𝑇𝑛+3𝑏+1𝑥) + 𝑑𝜃(𝑇

𝑛+3𝑏+1𝑥, 𝑇𝑛+3𝑏𝑥) + 𝑑𝜃(𝑇
𝑛+3𝑏𝑥, 𝑇𝑛+3𝑏−1𝑥) 

+𝑑𝜃(𝑇
𝑛+3𝑏−1𝑥, 𝑇𝑛𝑥)]  
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≤ 𝑠[𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑑𝜃(𝑇

𝑛+1𝑥, 𝑇𝑛+2𝑥) + ⋯……+ 𝑑𝜃(𝑇
𝑛+3𝑏−1𝑥, 𝑇𝑛+3𝑏𝑥) 

+𝑑𝜃(𝑇
𝑛+3𝑏𝑥, 𝑇𝑛+3𝑏−1𝑥)]  

≤ 𝑠[𝑘𝑛𝑑𝜃(𝑥, 𝑇𝑥) + 𝑘
𝑛+1𝑑𝜃(𝑥, 𝑇𝑥) +⋯……+ 𝑘𝑛+3𝑏−1𝑑𝜃(𝑥, 𝑇𝑥) + 𝑘

𝑛+3𝑏𝑑𝜃(𝑥, 𝑇𝑥)] 

≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑛+𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

≤ 𝑠∑𝑠𝑚
∞

𝑚

𝑘𝑚(𝑑𝜃(𝑥, 𝑇𝑥)) 

Finally  

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+𝑚𝑥) ≤ 𝑠∑𝑠𝑚

∞

𝑚

𝑘𝑚(𝑑𝜃(𝑥, 𝑇𝑥))                  (3.8) 

We deduce from all cases that 

𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+𝑚𝑥) ≤ 𝑠[𝑘𝑛𝑑𝜃(𝑥, 𝑇

2𝑥) +
𝑘𝑛

1 − 𝑘
𝑑𝜃(𝑥, 𝑇𝑥)]  ∀ 𝑛,𝑚 ≥ 0.     (3.9) 

Therefore,we have  

lim
𝑛→∞

𝑠 𝑑𝜃 (𝑇
𝑛𝑥, 𝑥) = lim

𝑛→∞
𝑠𝑑𝜃 (𝑇

𝑛𝑥, 𝑇𝑚𝑥) = 𝑑𝜃(𝑥, 𝑥) 

Since lim
𝑛→∞

𝑘𝑛

1−𝑘
𝑠 ‖𝑑𝜃(𝑥, 𝑇𝑥)‖ = 0 

We have lim
𝑛→∞

‖𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+𝑚𝑥)‖ = 0, ∀ 𝑛,𝑚 ∈ ℕ 

Which implies {𝑇𝑛𝑥}, is a Cauchy sequence in 𝑋. 

By completeness of 𝑋, there exists 𝑢 ∈ 𝑋 such that 

lim
𝑛→∞

𝑇𝑛𝑥 = 𝑢 

Now we will show that 𝑢 is a fixed point of 𝑇 𝑖. 𝑒. , 𝑇𝑢 = 𝑢. without loss of generality, 

assume that 𝑇𝑘 ≠ 𝑢 for any 𝑘 ∈ ℕ. therefore the triangular inequality implies that  
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𝑑𝜃(𝑢, 𝑇𝑢) 

≤ 𝑠[𝑑𝜃(𝑢, 𝑇
𝑛𝑥) + 𝑑𝜃(𝑇

𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑑𝜃(𝑇
𝑛+1𝑥, 𝑇𝑢)] 

≤ 𝑑𝜃(𝑢, 𝑇
𝑛𝑥) + 𝑠[𝑑𝜃(𝑇

𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑘[𝑑𝜃(𝑇𝑢, 𝑢) + 𝑑𝜃(𝑇
𝑛𝑥, 𝑢)]] 

                                                ⇒ 𝑑𝜃(𝑢, 𝑇𝑢) 

                    ≤
1

1 − 𝑘
𝑠[𝑑𝜃(𝑢, 𝑇

𝑛𝑥) + 𝑑𝜃(𝑇
𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑘𝑑𝜃(𝑇

𝑛𝑥, 𝑢)](3.10) 

Taking limit as 𝑛 → ∞, and using(3.4) 𝑎𝑛𝑑  (3.10), we have‖𝑑𝜃(𝑢, 𝑇𝑢)‖ = 0.  

Hence 𝑇𝑢 = 𝑢. 𝑖. 𝑒. , 𝑢 is a fixed point of 𝑇. 

To show the uniqueness of fixed point 𝑢. suppose 𝑢∗ is another fixed point of 𝑇, that is 

𝑇𝑢∗ = 𝑢. 

Therefore, 

𝑑𝜃(𝑢, 𝑢
∗) = 𝑑𝜃(𝑇𝑢, 𝑇𝑢

∗) ≤ 𝑘[𝑑𝜃(𝑢, 𝑇𝑢
∗) + 𝑑𝜃(𝑇𝑢, 𝑢

∗) + 𝑑𝜃(𝑢, 𝑢
∗)] = 0 

which implies that 

‖𝑑𝜃(𝑢, 𝑇𝑢)‖ = 0 

That is, 𝑢 = 𝑢∗. this completes the proof of the theorem.   

Example  𝟑. 𝟐. Let 𝒜 = {𝑎 = (𝑎𝑖𝑗)4×4 ∶  𝑎𝑖𝑗 ∈ ℝ, 1 ≤ 𝑖, 𝑗 ≤ 4} 𝑎𝑛𝑑 ‖𝑎‖ =

1

4
∑ |𝑎𝑖𝑗|.1≤𝑖,𝑗≤4  Take 𝑃 = {𝑎 ∈ 𝒜: 𝑎𝑖𝑗 ≥ 0, 1 ≤ 𝑖, 𝑗 ≤ 4} 𝑖𝑛 𝒜. Let 𝑋 = {1,2,3,4}. 

Define a mapping 𝑑𝑏𝑚𝑠: 𝑋
2 × 𝑋 → 𝒜 by 𝑑(1,1) = 𝑑(2,2) = 𝑑(3,3) = 𝑑(4,4) = 𝜃 
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𝑑𝑏𝑚𝑠(𝑥, 𝑦) =

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(2,1)

(

 
 1,1,4,1
4,2,3,1
1,4,3,1
1,2,3,4)

 
 
   𝑖𝑓 𝑥, 𝑦 ∈ 𝑋;

(3,1)

(

 
 4,1,4,1
4,3,5,2
2,3,1,4
3,4,2,1)

 
 
   𝑖𝑓  𝑥, 𝑦 ∈ 𝑋;

(4,1)

(

 
 4,1,1,1
2,3,4,2
3,2,1,1
4,3,2,1)

 
 
  𝑖𝑓 𝑥, 𝑦 ∈ 𝑋;    

(4,3)

(

 
 16,9,12,7
20,8,6,2
9,8,4,4
16,12,9,4)

 
 
  𝑖𝑓  𝑥, 𝑦 ∈ 𝑋; 

 

Then (𝑋, 𝑑𝑏𝑚𝑠) is an𝑏𝑀𝑆 − 𝐵𝐴 over 𝒜 with coefficient 𝑝 = (
4,0,0,0
0,4,0,0
0,0,4,0
0,0,0,4

). 
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Abstract—The power of Deep Learning-based Computer Vision is 

not only making Object Detection tasks efficient but also more 

interesting. It gives an ability to computers for performing 

complex tasks as humans by locating and distinguishing between 

objects. The present research paper aims to create a robust 

tracking algorithm based on a custom-built dataset of a rugby ball, 

generated to replicate industrial objects. With the rapid growth in 

the automation industry, the need for compact yet reliable 

computational algorithms is a necessity. The primary objective 

behind the whole system is to achieve mobile compatibility with 

accurate object detection and tracking. The work also states the 

usage of the Convolutional Neural Networks (CNN) to increase the 

overall performance of pattern/image detection in tracking 

problems. A simple yet robust object tracking algorithm 

accompanied with object detection on Single Shot Multi-Box 

Detector (SSD) MobileNet architecture is applied in this paper. 

The method offers a minuscule model compatible to run on 

embedded systems without trading off much performance. 
 

Keywords—Object Detection, Object Tracking, Holonomic 

Robot, Automation, Embedded System, Computer Vision  

I. INTRODUCTION  

Object detection is an inextricable part of the modern field 

of computer vision [1]. The ability of computers to perform 

complex tasks to locate and distinguish between objects has 

disrupted the conventional method to pave the path towards the 

industrial revolution [2]. Defense, automobile, and security & 

surveillance are few among the many industries disrupted by 

advances in the field of object detection. Object tracking deals 

with estimating the trajectory of the object in a confined image 

plane [3]. A tracking algorithm uses object-centric information 

such as shape, color, bound area, and orientation of the object. 

Though an efficacious method to solve complex real-time 

problems, complex object shapes, inefficient 3D to the 2D 

projection of objects, noisy image, and real-time computational 

cost are hurdles for object tracking. 

Autonomous systems in [4],[5] show the potential of 

combined systems to execute the tasks with human-like 

precision and if not, more. The amalgamation of object 

detection, object tracking, vision systems, and superior robotic 

maneuvering has led to more reliable systems. References 

[6],[7] outperforms the conventional drive of non-holonomy 

with the holonomic drive approach. Having a controllable 

degree of freedom equivalent to the total degree of freedom, the 

holonomic drive is commonly used in several mobile robots to 

perform autonomous as well as semi-autonomous tasks. 

Convolutional Neural Networks (CNN) offers excellent 

overall performance in pattern/image detection, surpassing 

human beings. Recent advances in CNN algorithms have 

opened new state-of-the-art techniques for image classification, 

object detection, object tracking, and semantic segmentation. 

Hierarchical feature representation has led to an increase in 

expressive capability and joint optimization [8], which 

surpasses the capabilities of traditional methods. 

Various mobile robots were studied in [9],[10] dealing with, 

robot navigation, obstacle avoidance, and accelerated object 

tracking methods. The mobile robots had common 

characteristics of non-holonomic drive and constructed a 

framework based on CNN, fuzzy logic, image processing, or 

monocular vision feedback. The non-holonomic drive in the 

study showed less freedom for robust tracking of an object in 

the 2D plane, lacking in the continuous and proportional 

relationship between the speed of the object to be tracked with 

the speed of the robot.  

Considering the scope of improvements in conventional 

methods of object tracking, a robust yet simple logical 

algorithm based on CNN to detect an object using the centroid 

of the bounding box is applied in this paper. The method offers 

a robust algorithm with freedom of locomotion on a horizontal 

plane with dynamic speed monitoring of the robot to locate, 

track, and follow. Also, the approach is tested on a holonomic 

robot accompanied with Omni wheels-based drive to evaluate 

the motion on the horizontal plane. The mechanical structure is 

monitored by an object detection model to detect rugby balls, 

trained on SSD MobileNet. This replicates the industrial 

application of tracking complicated objects. Also, providing a 

robust yet compact model to run on embedded systems.  

II. GENERIC OBJECT DETECTION AND TRACKING 

Recent frameworks of object detection algorithms permit 

object classification and position estimation of detected objects. 

Moreover, the development of frameworks in [11],[12] 

overcome complexity such as occlusions, noisy images, 

information lost due to projection of environment into a 2D 

image, complex shapes of objects, and real-time computational 

requirements. These advances have helped make modern-day 

object detection algorithms more robust than ever.  



In general object detection, once the object is detected, the 

tracking algorithm estimates the trajectory of the object through 

instance-by-instance evaluation of the frame in the video.  

A flow and various approaches for object detection and 

tracking are demonstrated in Fig. 1. 

 
 

Fig. 1. Various object detection and tracking approaches 

A. Object detection pipeline  

To determine the location of object (Object localization) 

and category of the detected object (Object classification), the 

pipeline of the object detection approach is divided into three 

stages which are further discussed below.  

1) Region determination: Different classes of objects at 

multiple positions, different aspect ratios and sizes governs the 

computational expenses of the algorithm. Sliding multi-scale 

windows on images are observed to be an obvious yet 

exhaustive and inefficient method to locate the region of 

interest (ROI). Furthermore, work in [13] showcases the ability 

to mimic the human brain up to some extent for scanning and 

focusing on ROI by utilizing CNN into sliding window to 

directly predict the top-most feature (CNN layer) by bounding 

boxes after obtaining the confidence of the object class. 

2) Feature extraction: To extract visual features, methods 

like segmentation, robust representation, and recognizing 

different classes are essential. These features are extracted from 

high dimensional features to final representation using CNN in 

a fixed resolution of the proposed region in the frame. 

3) Classification/ Regression: Unique identification of the 

specific object's class is a vital parameter for the evaluation of 

models' robustness. More hierarchical, semantic, and 

informative visual recognitions presented using the classifier in 

[14] resulted in better clustering of classes. Utilizing CNN, 

allows the training of models to learn key representations 

without the need to design the features manually. The weights 

and biases in the network established are frozen to extract the 

best-performing model. Finally, different determined regions 

are scored on the set of positive regions (ROI) and negative 

regions (i.e., background). Bounding box regressors are then fit 

on the scored regions to extract the final location of the object.  

B. Object tracking pipeline 

Continuous path estimation of the object in motion in the 
instance is the primary task of the object tracking algorithm. The 
target object is traced by selecting accurate features and object 
representations. In the first stage, optical flow, contours-based 
and histogram-based representation, and features recognized by 
CNN are some of the most common methods for feature 
detection. In the second stage, these feature detectors are utilized 
to create a correspondence between object occurrence in the 
frame both separately and jointly. Object tracking methods can 
be broadly categorized into three parts as discussed below.  

1) Point tracking: The correspondence of detected objects 

is represented by points across the frames in point tracking. 

These points are identified using deterministic and statistical 

methods. Generic thresholding is done using point recognition. 

Moreover, occasions and false detections are shortcomings for 

the method.  

2) Kernel tracking: Potential regions of objects are 

represented frame by frame for computing the object in motion. 

Parametric motions such as affined, conformal, and 

translational are observed. Usually, different types of objects 

are tracked, and approximating the motion of the object is done. 

Few kernel-based tracking approaches are:  

a) Dual-Tree Complex Wavelet Transform Technique: 

Real wavelet transform employed here leads to poor 

directionality & shift variance and complex wavelet transform. 

Real filters are used to obtain shift variance in the tracking 

technique.  

b) Segmentation: The approach finds the object in 

motion through optical flow computation. A considerable part 

of the video sequence is converted into gray-scale to apply the 

Horn-Schunk method for optical flow determination between 

any two images. The magnitude squared values of the optical 

flow, |V|2, is calculated to compare the mean value of the first 

image with the optical flow of each pixel in the frame of the 

video sequence. Pixel values for each image are then set as true 

or high if |V|2, at any pixel, is greater than or equal to the mean. 

c) Object tracking using Color Histogram: Target model 

and candidate models are established in feature space to 

characterize the model. As illustrated in (1), the target model is 

defined as a probability density function �̂�  in the given feature 

space. Similarly, the candidate model is defined as 𝑦 and also 

characterized as the probability density function �̂�(𝑦). Further, 

a similarity function �̂�(𝑦), Bhattacharyya coefficient between  

�̂� and �̂� play the role of the likelihood for the local maxima in 

the frame indicating the presence of the object. 

d(y)= √1- ρ[  p̂(y),   q̂]                          (1) 

3) Silhouette tracking: Many times objects have complex 

shapes which cannot be fit geometrically in the object tracking 

mechanism, a silhouette-based approach is used to bound the 

detected objects in descriptive shapes. The method can 

represent in the form of edges, histogram, and contours. The 

silhouette tracking method can be classified into two categories, 

shape matching, and contour tracking. 



III. OBJECT DETECTION AND TRACKING USING ITERATIVE RE-

CENTRING APPROACH 

A robotic system was designed to implement the task of 

object detection and object tracking to capture the ball in 

motion with live feedback from vision systems. 

 

Fig. 2 (a) Gathering Images, (b) Augmentation, (c) Splitting Data, (d) Training 
of model, (e) Deploy on Raspberry Pi, (f) Run the model with bounding box 
and get coordinates, (g) Send coordinates to Arduino, (h) Track the ball.  

To recognize the rugby ball distinctly, an object detection 
algorithm SSD MobileNet was utilized. The generated model by 
the algorithm being compact in terms of model size and 
computational power to run makes it feasible to accommodate it 
on an embedded system for the task of object detection. The 
steps performed and applied algorithms are demonstrated 
below: 

A. Dataset 

In object detection, images play a crucial role for a model to 
learn from and act as a source to gather salient features [15]. A 
total of 3300 sample images of rugby balls were collected in 
various orientations, backgrounds, colors, and angles. Such 
variance in sample images provides a generalized input for real 
possible scenarios while detection. Moreover, a close 
examination of the dataset was done to generate the same 
proportion of images with different characteristics to avoid 
undesirable bias for the model training. 

The major portion of the dataset was gathered by employing 
the web-scrapping algorithm to extract images of rugby balls 
effortlessly. The dataset also consisted of snaps of a rugby ball 
in different orientations, lighting conditions, and occlusions 
which were gathered locally. Finally, as shown in Fig. 2(a) all 
the images were resized to 300 X 300-pixel dimensions for equal 
scaling of all the data points. 

B. Data augmentation and labeling  

Due to the lack of ample amount of data points as well as 

the diversity of the data, inefficient extraction of salient features 

can be induced, resulting in underperformance of the model 

[16]. Data augmentation techniques applied on datapoints can 

aid in scaling the dataset by folds and allows attaining the 

generalization by adding diversity to the data points. Data 

augmentation techniques such as interpolation, color distortion, 

blur, noise injection, cropping, flip, and rotations were applied 

as shown in Fig. 2(b). 

The collected data points were split into training and testing 

data and annotated to provide the pivotal metadata for the 

supervised training of the model. Annotations are important 

features for determining the location and pixel area covered by 

the object in the image. Which helps in feature extraction while 

training, restricting computation to the ROI, and assists in 

robust modeling of the data points. 

C. Model architecture and training 

The images of the dataset were fine-tuned on a pre-trained 

neural architecture using the SSD algorithm, SSD MobileNet. 

The algorithm performs the tasks of object localization &. 

classification, bounding box regression, and a classifier 

network to distinguish the detected objects. The architecture 

accompanies two deep neural networks, a base network 

(MobileNet) and a detection network (SSD). The base network 

can be divided into two blocks, depth-wise separable 

convolution (DW) and point-wise convolution (PW) [17]. 

a) Depth-wise separable layer: Depth-wise layer is 

utilized for filtering while the point-wise layer is utilized for 

combining the incoming feature maps from various channels. 

A standard convolutional layer consists of 𝐷𝐾  ×  𝐷𝐾  ×  𝐷𝐾  

input [17], M being the input channels through N convolution 

kernels for N feature maps for kernel size K. The standard 

computational cost can be calculated as in (2). 

DK ∙ DK ∙M ∙N ∙ DF ∙ DF                          (2) 

 

DK ∙ DK ∙M ∙ DF + M ∙N ∙ DF ∙ DF                  (3) 

Since a depth-wise separable convolution consists of depth-
wise convolution and a point-wise convolution. The total 
computational cost is shown in (3). The computing ratio of 
depth-wise separable convolution and standard convolutions is 
expressed in (4).  

DK ∙ DK ∙M ∙ DF ∙ DF +M∙N ∙DF ∙DF

DK ∙ DK ∙ M ∙ N ∙ DF ∙ DF
                  (4) 

A drastic decrement in the computation cost of depth-wise 
separable convolution can be learned in (5) [17]. 

                                     
1

N
 + 

1

DK
2                                    (5) 

b) Inverted residuals: The vulnerability of information 

loss increases after ReLU operation on lower-dimensional 

features in depth-wise separable convolution. The linear 

bottleneck is a complement to the depth-wise separable 

convolution. ReLU is replaced by a linear activation function 

to avoid further information losses. Point-wise convolution is 

used to advance the dimension to increase the channels after 

depth-wise processing.  

c) Single Shot MultiBox Detector (SSD): The detection 

network is a single feed-forward-based convolutional neural 



network capable of multi-target detection by simultaneously 

predicting the target categories with bounding boxes [18]. SSD 

is built on venerable VGG-16 architecture with six auxiliary 

feature layers, delivering strong performance in high-quality 

image classification and its ability to implement transfer 

learning to improve results. To predict the different types of 

offsets of the boxes with different scales, aspect ratios, and 

corresponding confidences, large amounts of multi-scaled 

borders are generated at different information layers. A fast 

class-agnostic bounding box co-ordinates proposal method is 

used for bounding box regression. The method uses a 1 X 1 

convolution for dimensionality reductions but preserves the 

width and height. As in (6), the cumulative multi-box loss 

function is governed by confidence loss and location loss.  

multibox loss=confidence loss+ α ×location loss      (6) 

D. Tracking Algorithm  

To track and maneuver the mechanism for rugby ball and 

get repeated feedback of the object in the environment through 

a vision system, a tracking algorithm was employed. The 

algorithm comes next in the pipeline after object detection in 

the frame as shown in Fig. 2(h). The frame is split into four 

quadrants and scaled for the input frame dimension of 480 X 

360, resulting in diminishing the computational cost for frame 

evaluation. Moreover, the algorithm provides a tracking 

approach for the variable speed of the object in the frame. The 

centroid-focused tracking algorithm is divided into parts and 

explained:  

a) Generate bounding boxes: The object in the frame is 

detected by the trained model. To generate the location of the 

detected rugby ball in the frame, rectangular bounding boxes 

are formed to enclose the target. Enabling accurate positioning 

of the rugby ball in the frame and aids in extracting the 

coordinates of the enclosed area in the rectangular space. The 

boxes can be generated in any quadrant of the frame leading to 

consistent locating. 

b) Generate centroid:  Though the bounding boxes can 

produce the accurate area of the rugby ball in the frame, they 

fail to extract the location of the object at point precision. 

Centroid-based tracking can solve the problem by calculating 

the centroid of the rectangular bounding box used to enclose the 

rugby ball for points M00, M01, M10, M11 as demonstrated in (7). 

Resulting in an average location of the detected object, 

returning a point on the X-Y plane. Diminishing the ROI into 

point of interest (POI), the task of precisely locating the object 

can be accomplished.  

M00 + M01 + M10 + M11

4
                             (7) 

c) Co-ordinate mapping and re-centering: To track the 

motion of a rugby ball horizontally using an iterative re-

centering mechanism, co-ordinate mapping is introduced. With 

the rugby ball in motion with variable velocity, the system can 

fail due to slow reaction time. Analog mapping of horizontal 

coordinates is implemented to assign variable speed for the 

horizontal re-centering of the robotic base. The positioning is 

monitored using iterative feedback from the vision system. 

 

Fig. 3 Visualization of co-ordinate mapping and recentering 

The base of the holonomic robot is dynamically re-centered 

for speed-sensitive to the horizontal coordinates of the detected 

centroid. The visualization of the iterative algorithm as depicted 

in Fig. 3 monitors in a simple yet robust manner and 

dynamically vary the velocity for tracking as well as re-

centering the rugby ball. 

IV. EXPERIMENTAL SETUP 

The trained SSD MobileNet model and proposed object 

tracking method were tested on the holonomic structure shown 

in Fig. 4. The system includes four Omni-wheels coupled with 

planetary gear motors at the base providing smooth locomotion 

on a horizontal plane. This allows a degree of freedom for two 

axes. The structure incorporates a vision system, computational 

boards: Raspberry Pi, Arduino Mega, Motor Drivers to 

synchronize the motion of motors, and Communication Bus 

Architecture to regulate the transferring of information between 

computational boards. The system is powered by a 12V LiPo 

battery. Which supplies power to motor drivers, synchronizing 

the motors. The actions of these motor drivers are regulated by 

Arduino Mega assisted by logical conditions applied in Arduino 

sketch. 

 

Fig. 4. Holonomic Structure 



The camera module in connection with Raspberry Pi 4B 

with 4GB RAM and quad-core A72 cortex processor, captures 

the frames in the live feed. The captured frame is monitored to 

detect the rugby ball with bounding boxes. The coordinates of 

the detected bounding boxes are utilized to calculate centroid 

points and transferred to the Arduino Mega using the I2C 

communication protocol. The base of the robot is re-centered 

sensitively using analog-based velocity mapping under the 

monitoring of logical parameters by Arduino. The system was 

tested in multiple environments. 

V. RESULTS AND DISCUSSION 

The paper presents the results of the validation of the rugby 

ball dataset. The dataset was split into a split ratio of 0.8 and 

0.2 for the training and validation of the model, respectively. 

The model was trained up to 25100 iterations. For the overall 

evaluation of our approach, several evaluation metrics were 

performed to study the results. 

A. Evaluation of training performance  

For detection of a rugby ball, the SSD MobileNet was fine-

tuned on the custom dataset. The training session was 

conducted on Tesla K80 GPU with 12GB RAM. Based on the 

training session, various observations have been done using 

TensorBoard with step and their respective losses on the x-axis 

and y-axis respectively as shown in Fig. (5)-(9).  

To evaluate the accuracy of the prediction of classes by 

model, classification loss as shown in Fig. 5 was plotted. With 

an increment in the number of steps, the losses decreased 

constantly till 0.2. This showcases the robust classification 

ability of the trained model. 

 The localization loss as shown in Fig. 7 was visualized to 

evaluate the error between predicted bounding box corrections 

and true values. The results show minimal losses due to 

localization resulting in a reduction of loss to 0.1. Moreover, 

Normalized loss in Fig. 7, as well as regularization loss in Fig. 

8, were reduced below 0.5 and 0.2, respectively. This 

demonstrates the generalization property of the model, leading 

towards better accuracy.  

Finally, the total loss in Fig .9 was a plot for evaluating the 

overall loss in terms of classification, regularization, and 

localization. Total loss constantly decreased up to 0.5. 

 

Fig. 5. Classification Loss 

 

Fig. 6. Localization Loss 

 

Fig. 7. Normalized Loss 

 

Fig. 8. Regularization Loss 

 

Fig. 9. Total Loss 



B. Object detection in action 

After model training and studying the graphs, a minuscule 

model was tested to detect the rugby ball in various robust 

environments along with multiple objects in the surroundings. 

Moreover, to test the reliability of the generalization of the 

trained model, the rugby ball was adjusted at different 

orientations. As seen in Fig. 10 the model was able to detect the 

location of the rugby ball at different orientations and could 

distinguish between different objects.  

 

Fig. 10. Testing different orientations. (a) Horizontal, (b) Tilted, (c) Vertical. 

C. Performance of object tracking 

The performance of object tracking highly depends on the 

computational cost to run the algorithm for each frame. The size 

of the object detection model directly affects the Frames per 

Second (FPS) by increasing the computational cost. The 

performance of the object tracking algorithm was evaluated 

based on the FPS procured and the size of the model. To 

compare, the base model trained on SSD MobileNet was 

quantized using an 8-bit quantizer. The results are compared in 

the table below.  

TABLE I.  COMPARISON BETWEEN THE BASE AND QUANTIZED MODEL. 

Model FPS Accuracy Model Size 

SSD MobileNet 2.43 0.984 35.47 Mb 

SSD MobileNet 8-bit 

Quantized 
5.86 0.950 8.44 Mb 

VI. CONCLUSION  

The paper presents a simple yet robust object tracking 

system using CNN based framework for object recognition. 

The method regulates the tracking of the object with variable 

speed in the frame to re-center it to the origin. Based on a 

custom dataset of a rugby ball, the system is tested for mobile 

compatibility of the model using SSD MobileNet as well as its 

quantized version. The results are compared on the metrics of 

FPS, accuracy, and size of the model to test its compatibility on 

Raspberry Pi 4B. Moreover, the quantized model was tested 

along with a vision system on a holonomic system to examine 

the responsiveness of the object tracking algorithm towards the 

variable speed of the object in the frame. The methods used in 

the paper can be used to develop a quick and responsive 

maneuvering mechanism for robotic systems. Also, the work in 

the paper can be utilized to develop a robust yet minuscule 

model compatible with embedded systems. 
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Abstract—The power of Deep Learning-based Computer Vision is 

not only making Object Detection tasks efficient but also more 

interesting. It gives an ability to computers for performing 

complex tasks as humans by locating and distinguishing between 

objects. The present research paper aims to create a robust 

tracking algorithm based on a custom-built dataset of a rugby ball, 

generated to replicate industrial objects. With the rapid growth in 

the automation industry, the need for compact yet reliable 

computational algorithms is a necessity. The primary objective 

behind the whole system is to achieve mobile compatibility with 

accurate object detection and tracking. The work also states the 

usage of the Convolutional Neural Networks (CNN) to increase the 

overall performance of pattern/image detection in tracking 

problems. A simple yet robust object tracking algorithm 

accompanied with object detection on Single Shot Multi-Box 

Detector (SSD) MobileNet architecture is applied in this paper. 

The method offers a minuscule model compatible to run on 

embedded systems without trading off much performance. 
 

Keywords—Object Detection, Object Tracking, Holonomic 

Robot, Automation, Embedded System, Computer Vision  

I. INTRODUCTION  

Object detection is an inextricable part of the modern field 

of computer vision [1]. The ability of computers to perform 

complex tasks to locate and distinguish between objects has 

disrupted the conventional method to pave the path towards the 

industrial revolution [2]. Defense, automobile, and security & 

surveillance are few among the many industries disrupted by 

advances in the field of object detection. Object tracking deals 

with estimating the trajectory of the object in a confined image 

plane [3]. A tracking algorithm uses object-centric information 

such as shape, color, bound area, and orientation of the object. 

Though an efficacious method to solve complex real-time 

problems, complex object shapes, inefficient 3D to the 2D 

projection of objects, noisy image, and real-time computational 

cost are hurdles for object tracking. 

Autonomous systems in [4],[5] show the potential of 

combined systems to execute the tasks with human-like 

precision and if not, more. The amalgamation of object 

detection, object tracking, vision systems, and superior robotic 

maneuvering has led to more reliable systems. References 

[6],[7] outperforms the conventional drive of non-holonomy 

with the holonomic drive approach. Having a controllable 

degree of freedom equivalent to the total degree of freedom, the 

holonomic drive is commonly used in several mobile robots to 

perform autonomous as well as semi-autonomous tasks. 

Convolutional Neural Networks (CNN) offers excellent 

overall performance in pattern/image detection, surpassing 

human beings. Recent advances in CNN algorithms have 

opened new state-of-the-art techniques for image classification, 

object detection, object tracking, and semantic segmentation. 

Hierarchical feature representation has led to an increase in 

expressive capability and joint optimization [8], which 

surpasses the capabilities of traditional methods. 

Various mobile robots were studied in [9],[10] dealing with, 

robot navigation, obstacle avoidance, and accelerated object 

tracking methods. The mobile robots had common 

characteristics of non-holonomic drive and constructed a 

framework based on CNN, fuzzy logic, image processing, or 

monocular vision feedback. The non-holonomic drive in the 

study showed less freedom for robust tracking of an object in 

the 2D plane, lacking in the continuous and proportional 

relationship between the speed of the object to be tracked with 

the speed of the robot.  

Considering the scope of improvements in conventional 

methods of object tracking, a robust yet simple logical 

algorithm based on CNN to detect an object using the centroid 

of the bounding box is applied in this paper. The method offers 

a robust algorithm with freedom of locomotion on a horizontal 

plane with dynamic speed monitoring of the robot to locate, 

track, and follow. Also, the approach is tested on a holonomic 

robot accompanied with Omni wheels-based drive to evaluate 

the motion on the horizontal plane. The mechanical structure is 

monitored by an object detection model to detect rugby balls, 

trained on SSD MobileNet. This replicates the industrial 

application of tracking complicated objects. Also, providing a 

robust yet compact model to run on embedded systems.  

II. GENERIC OBJECT DETECTION AND TRACKING 

Recent frameworks of object detection algorithms permit 

object classification and position estimation of detected objects. 

Moreover, the development of frameworks in [11],[12] 

overcome complexity such as occlusions, noisy images, 

information lost due to projection of environment into a 2D 

image, complex shapes of objects, and real-time computational 

requirements. These advances have helped make modern-day 

object detection algorithms more robust than ever.  



In general object detection, once the object is detected, the 

tracking algorithm estimates the trajectory of the object through 

instance-by-instance evaluation of the frame in the video.  

A flow and various approaches for object detection and 

tracking are demonstrated in Fig. 1. 

 
 

Fig. 1. Various object detection and tracking approaches 

A. Object detection pipeline  

To determine the location of object (Object localization) 

and category of the detected object (Object classification), the 

pipeline of the object detection approach is divided into three 

stages which are further discussed below.  

1) Region determination: Different classes of objects at 

multiple positions, different aspect ratios and sizes governs the 

computational expenses of the algorithm. Sliding multi-scale 

windows on images are observed to be an obvious yet 

exhaustive and inefficient method to locate the region of 

interest (ROI). Furthermore, work in [13] showcases the ability 

to mimic the human brain up to some extent for scanning and 

focusing on ROI by utilizing CNN into sliding window to 

directly predict the top-most feature (CNN layer) by bounding 

boxes after obtaining the confidence of the object class. 

2) Feature extraction: To extract visual features, methods 

like segmentation, robust representation, and recognizing 

different classes are essential. These features are extracted from 

high dimensional features to final representation using CNN in 

a fixed resolution of the proposed region in the frame. 

3) Classification/ Regression: Unique identification of the 

specific object's class is a vital parameter for the evaluation of 

models' robustness. More hierarchical, semantic, and 

informative visual recognitions presented using the classifier in 

[14] resulted in better clustering of classes. Utilizing CNN, 

allows the training of models to learn key representations 

without the need to design the features manually. The weights 

and biases in the network established are frozen to extract the 

best-performing model. Finally, different determined regions 

are scored on the set of positive regions (ROI) and negative 

regions (i.e., background). Bounding box regressors are then fit 

on the scored regions to extract the final location of the object.  

B. Object tracking pipeline 

Continuous path estimation of the object in motion in the 
instance is the primary task of the object tracking algorithm. The 
target object is traced by selecting accurate features and object 
representations. In the first stage, optical flow, contours-based 
and histogram-based representation, and features recognized by 
CNN are some of the most common methods for feature 
detection. In the second stage, these feature detectors are utilized 
to create a correspondence between object occurrence in the 
frame both separately and jointly. Object tracking methods can 
be broadly categorized into three parts as discussed below.  

1) Point tracking: The correspondence of detected objects 

is represented by points across the frames in point tracking. 

These points are identified using deterministic and statistical 

methods. Generic thresholding is done using point recognition. 

Moreover, occasions and false detections are shortcomings for 

the method.  

2) Kernel tracking: Potential regions of objects are 

represented frame by frame for computing the object in motion. 

Parametric motions such as affined, conformal, and 

translational are observed. Usually, different types of objects 

are tracked, and approximating the motion of the object is done. 

Few kernel-based tracking approaches are:  

a) Dual-Tree Complex Wavelet Transform Technique: 

Real wavelet transform employed here leads to poor 

directionality & shift variance and complex wavelet transform. 

Real filters are used to obtain shift variance in the tracking 

technique.  

b) Segmentation: The approach finds the object in 

motion through optical flow computation. A considerable part 

of the video sequence is converted into gray-scale to apply the 

Horn-Schunk method for optical flow determination between 

any two images. The magnitude squared values of the optical 

flow, |V|2, is calculated to compare the mean value of the first 

image with the optical flow of each pixel in the frame of the 

video sequence. Pixel values for each image are then set as true 

or high if |V|2, at any pixel, is greater than or equal to the mean. 

c) Object tracking using Color Histogram: Target model 

and candidate models are established in feature space to 

characterize the model. As illustrated in (1), the target model is 

defined as a probability density function �̂�  in the given feature 

space. Similarly, the candidate model is defined as 𝑦 and also 

characterized as the probability density function �̂�(𝑦). Further, 

a similarity function �̂�(𝑦), Bhattacharyya coefficient between  

�̂� and �̂� play the role of the likelihood for the local maxima in 

the frame indicating the presence of the object. 

d(y)= √1- ρ[  p̂(y),   q̂]                          (1) 

3) Silhouette tracking: Many times objects have complex 

shapes which cannot be fit geometrically in the object tracking 

mechanism, a silhouette-based approach is used to bound the 

detected objects in descriptive shapes. The method can 

represent in the form of edges, histogram, and contours. The 

silhouette tracking method can be classified into two categories, 

shape matching, and contour tracking. 



III. OBJECT DETECTION AND TRACKING USING ITERATIVE RE-

CENTRING APPROACH 

A robotic system was designed to implement the task of 

object detection and object tracking to capture the ball in 

motion with live feedback from vision systems. 

 

Fig. 2 (a) Gathering Images, (b) Augmentation, (c) Splitting Data, (d) Training 
of model, (e) Deploy on Raspberry Pi, (f) Run the model with bounding box 
and get coordinates, (g) Send coordinates to Arduino, (h) Track the ball.  

To recognize the rugby ball distinctly, an object detection 
algorithm SSD MobileNet was utilized. The generated model by 
the algorithm being compact in terms of model size and 
computational power to run makes it feasible to accommodate it 
on an embedded system for the task of object detection. The 
steps performed and applied algorithms are demonstrated 
below: 

A. Dataset 

In object detection, images play a crucial role for a model to 
learn from and act as a source to gather salient features [15]. A 
total of 3300 sample images of rugby balls were collected in 
various orientations, backgrounds, colors, and angles. Such 
variance in sample images provides a generalized input for real 
possible scenarios while detection. Moreover, a close 
examination of the dataset was done to generate the same 
proportion of images with different characteristics to avoid 
undesirable bias for the model training. 

The major portion of the dataset was gathered by employing 
the web-scrapping algorithm to extract images of rugby balls 
effortlessly. The dataset also consisted of snaps of a rugby ball 
in different orientations, lighting conditions, and occlusions 
which were gathered locally. Finally, as shown in Fig. 2(a) all 
the images were resized to 300 X 300-pixel dimensions for equal 
scaling of all the data points. 

B. Data augmentation and labeling  

Due to the lack of ample amount of data points as well as 

the diversity of the data, inefficient extraction of salient features 

can be induced, resulting in underperformance of the model 

[16]. Data augmentation techniques applied on datapoints can 

aid in scaling the dataset by folds and allows attaining the 

generalization by adding diversity to the data points. Data 

augmentation techniques such as interpolation, color distortion, 

blur, noise injection, cropping, flip, and rotations were applied 

as shown in Fig. 2(b). 

The collected data points were split into training and testing 

data and annotated to provide the pivotal metadata for the 

supervised training of the model. Annotations are important 

features for determining the location and pixel area covered by 

the object in the image. Which helps in feature extraction while 

training, restricting computation to the ROI, and assists in 

robust modeling of the data points. 

C. Model architecture and training 

The images of the dataset were fine-tuned on a pre-trained 

neural architecture using the SSD algorithm, SSD MobileNet. 

The algorithm performs the tasks of object localization &. 

classification, bounding box regression, and a classifier 

network to distinguish the detected objects. The architecture 

accompanies two deep neural networks, a base network 

(MobileNet) and a detection network (SSD). The base network 

can be divided into two blocks, depth-wise separable 

convolution (DW) and point-wise convolution (PW) [17]. 

a) Depth-wise separable layer: Depth-wise layer is 

utilized for filtering while the point-wise layer is utilized for 

combining the incoming feature maps from various channels. 

A standard convolutional layer consists of 𝐷𝐾  ×  𝐷𝐾  ×  𝐷𝐾  

input [17], M being the input channels through N convolution 

kernels for N feature maps for kernel size K. The standard 

computational cost can be calculated as in (2). 

DK ∙ DK ∙M ∙N ∙ DF ∙ DF                          (2) 

 

DK ∙ DK ∙M ∙ DF + M ∙N ∙ DF ∙ DF                  (3) 

Since a depth-wise separable convolution consists of depth-
wise convolution and a point-wise convolution. The total 
computational cost is shown in (3). The computing ratio of 
depth-wise separable convolution and standard convolutions is 
expressed in (4).  

DK ∙ DK ∙M ∙ DF ∙ DF +M∙N ∙DF ∙DF

DK ∙ DK ∙ M ∙ N ∙ DF ∙ DF
                  (4) 

A drastic decrement in the computation cost of depth-wise 
separable convolution can be learned in (5) [17]. 

                                     
1

N
 + 

1

DK
2                                    (5) 

b) Inverted residuals: The vulnerability of information 

loss increases after ReLU operation on lower-dimensional 

features in depth-wise separable convolution. The linear 

bottleneck is a complement to the depth-wise separable 

convolution. ReLU is replaced by a linear activation function 

to avoid further information losses. Point-wise convolution is 

used to advance the dimension to increase the channels after 

depth-wise processing.  

c) Single Shot MultiBox Detector (SSD): The detection 

network is a single feed-forward-based convolutional neural 



network capable of multi-target detection by simultaneously 

predicting the target categories with bounding boxes [18]. SSD 

is built on venerable VGG-16 architecture with six auxiliary 

feature layers, delivering strong performance in high-quality 

image classification and its ability to implement transfer 

learning to improve results. To predict the different types of 

offsets of the boxes with different scales, aspect ratios, and 

corresponding confidences, large amounts of multi-scaled 

borders are generated at different information layers. A fast 

class-agnostic bounding box co-ordinates proposal method is 

used for bounding box regression. The method uses a 1 X 1 

convolution for dimensionality reductions but preserves the 

width and height. As in (6), the cumulative multi-box loss 

function is governed by confidence loss and location loss.  

multibox loss=confidence loss+ α ×location loss      (6) 

D. Tracking Algorithm  

To track and maneuver the mechanism for rugby ball and 

get repeated feedback of the object in the environment through 

a vision system, a tracking algorithm was employed. The 

algorithm comes next in the pipeline after object detection in 

the frame as shown in Fig. 2(h). The frame is split into four 

quadrants and scaled for the input frame dimension of 480 X 

360, resulting in diminishing the computational cost for frame 

evaluation. Moreover, the algorithm provides a tracking 

approach for the variable speed of the object in the frame. The 

centroid-focused tracking algorithm is divided into parts and 

explained:  

a) Generate bounding boxes: The object in the frame is 

detected by the trained model. To generate the location of the 

detected rugby ball in the frame, rectangular bounding boxes 

are formed to enclose the target. Enabling accurate positioning 

of the rugby ball in the frame and aids in extracting the 

coordinates of the enclosed area in the rectangular space. The 

boxes can be generated in any quadrant of the frame leading to 

consistent locating. 

b) Generate centroid:  Though the bounding boxes can 

produce the accurate area of the rugby ball in the frame, they 

fail to extract the location of the object at point precision. 

Centroid-based tracking can solve the problem by calculating 

the centroid of the rectangular bounding box used to enclose the 

rugby ball for points M00, M01, M10, M11 as demonstrated in (7). 

Resulting in an average location of the detected object, 

returning a point on the X-Y plane. Diminishing the ROI into 

point of interest (POI), the task of precisely locating the object 

can be accomplished.  

M00 + M01 + M10 + M11

4
                             (7) 

c) Co-ordinate mapping and re-centering: To track the 

motion of a rugby ball horizontally using an iterative re-

centering mechanism, co-ordinate mapping is introduced. With 

the rugby ball in motion with variable velocity, the system can 

fail due to slow reaction time. Analog mapping of horizontal 

coordinates is implemented to assign variable speed for the 

horizontal re-centering of the robotic base. The positioning is 

monitored using iterative feedback from the vision system. 

 

Fig. 3 Visualization of co-ordinate mapping and recentering 

The base of the holonomic robot is dynamically re-centered 

for speed-sensitive to the horizontal coordinates of the detected 

centroid. The visualization of the iterative algorithm as depicted 

in Fig. 3 monitors in a simple yet robust manner and 

dynamically vary the velocity for tracking as well as re-

centering the rugby ball. 

IV. EXPERIMENTAL SETUP 

The trained SSD MobileNet model and proposed object 

tracking method were tested on the holonomic structure shown 

in Fig. 4. The system includes four Omni-wheels coupled with 

planetary gear motors at the base providing smooth locomotion 

on a horizontal plane. This allows a degree of freedom for two 

axes. The structure incorporates a vision system, computational 

boards: Raspberry Pi, Arduino Mega, Motor Drivers to 

synchronize the motion of motors, and Communication Bus 

Architecture to regulate the transferring of information between 

computational boards. The system is powered by a 12V LiPo 

battery. Which supplies power to motor drivers, synchronizing 

the motors. The actions of these motor drivers are regulated by 

Arduino Mega assisted by logical conditions applied in Arduino 

sketch. 

 

Fig. 4. Holonomic Structure 



The camera module in connection with Raspberry Pi 4B 

with 4GB RAM and quad-core A72 cortex processor, captures 

the frames in the live feed. The captured frame is monitored to 

detect the rugby ball with bounding boxes. The coordinates of 

the detected bounding boxes are utilized to calculate centroid 

points and transferred to the Arduino Mega using the I2C 

communication protocol. The base of the robot is re-centered 

sensitively using analog-based velocity mapping under the 

monitoring of logical parameters by Arduino. The system was 

tested in multiple environments. 

V. RESULTS AND DISCUSSION 

The paper presents the results of the validation of the rugby 

ball dataset. The dataset was split into a split ratio of 0.8 and 

0.2 for the training and validation of the model, respectively. 

The model was trained up to 25100 iterations. For the overall 

evaluation of our approach, several evaluation metrics were 

performed to study the results. 

A. Evaluation of training performance  

For detection of a rugby ball, the SSD MobileNet was fine-

tuned on the custom dataset. The training session was 

conducted on Tesla K80 GPU with 12GB RAM. Based on the 

training session, various observations have been done using 

TensorBoard with step and their respective losses on the x-axis 

and y-axis respectively as shown in Fig. (5)-(9).  

To evaluate the accuracy of the prediction of classes by 

model, classification loss as shown in Fig. 5 was plotted. With 

an increment in the number of steps, the losses decreased 

constantly till 0.2. This showcases the robust classification 

ability of the trained model. 

 The localization loss as shown in Fig. 7 was visualized to 

evaluate the error between predicted bounding box corrections 

and true values. The results show minimal losses due to 

localization resulting in a reduction of loss to 0.1. Moreover, 

Normalized loss in Fig. 7, as well as regularization loss in Fig. 

8, were reduced below 0.5 and 0.2, respectively. This 

demonstrates the generalization property of the model, leading 

towards better accuracy.  

Finally, the total loss in Fig .9 was a plot for evaluating the 

overall loss in terms of classification, regularization, and 

localization. Total loss constantly decreased up to 0.5. 

 

Fig. 5. Classification Loss 

 

Fig. 6. Localization Loss 

 

Fig. 7. Normalized Loss 

 

Fig. 8. Regularization Loss 

 

Fig. 9. Total Loss 



B. Object detection in action 

After model training and studying the graphs, a minuscule 

model was tested to detect the rugby ball in various robust 

environments along with multiple objects in the surroundings. 

Moreover, to test the reliability of the generalization of the 

trained model, the rugby ball was adjusted at different 

orientations. As seen in Fig. 10 the model was able to detect the 

location of the rugby ball at different orientations and could 

distinguish between different objects.  

 

Fig. 10. Testing different orientations. (a) Horizontal, (b) Tilted, (c) Vertical. 

C. Performance of object tracking 

The performance of object tracking highly depends on the 

computational cost to run the algorithm for each frame. The size 

of the object detection model directly affects the Frames per 

Second (FPS) by increasing the computational cost. The 

performance of the object tracking algorithm was evaluated 

based on the FPS procured and the size of the model. To 

compare, the base model trained on SSD MobileNet was 

quantized using an 8-bit quantizer. The results are compared in 

the table below.  

TABLE I.  COMPARISON BETWEEN THE BASE AND QUANTIZED MODEL. 

Model FPS Accuracy Model Size 

SSD MobileNet 2.43 0.984 35.47 Mb 

SSD MobileNet 8-bit 

Quantized 
5.86 0.950 8.44 Mb 

VI. CONCLUSION  

The paper presents a simple yet robust object tracking 

system using CNN based framework for object recognition. 

The method regulates the tracking of the object with variable 

speed in the frame to re-center it to the origin. Based on a 

custom dataset of a rugby ball, the system is tested for mobile 

compatibility of the model using SSD MobileNet as well as its 

quantized version. The results are compared on the metrics of 

FPS, accuracy, and size of the model to test its compatibility on 

Raspberry Pi 4B. Moreover, the quantized model was tested 

along with a vision system on a holonomic system to examine 

the responsiveness of the object tracking algorithm towards the 

variable speed of the object in the frame. The methods used in 

the paper can be used to develop a quick and responsive 

maneuvering mechanism for robotic systems. Also, the work in 

the paper can be utilized to develop a robust yet minuscule 

model compatible with embedded systems. 
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